
虚谷数据库V12

自定义类型
(v1.0)
[image: image4.png]2!

P

成都虚谷伟业科技有限公司
Chengdu Xugu Weiye Technology Co.,Ltd

版权所有 侵权必究

All rights reserved

（2019年6月）

目录

1一. 概述

11.1. 术语

2二. 设计

22.1. 概述

2(1) 存贮结构设计

3(2) 构造函数设计

3(3) 继承(子类和超类)

4(4) 比较

4(5) 赋值

4(6) 转换函数

4(7) 数据存取流程

52.2. OBJECT

62.3. VARRAY

62.4. TABLE

7三. UDT使用

73.1. OBJECT类型

7(1) 创建

10(2) 插入

12(3) 更新

12(4) 查询

13(5) 删除

143.2. VARRAY类型

14(1) 创建

15(2) 插入

18(3) 更新

19(4) 查询

20(5) 删除

203.3. TABLE类型

21(1) 声明

22(2) 插入

24(3) 更新

25(4) 查询

26(5) 删除

273.4. 复合类型

28四. PL/SQl中集合类型和记录类型

284.1. 集合类型概述

28(1) 声明集合

29(2) 初始化集合

29(3) 不同集合区别

30(4) 集合方法

314.2. VARRAY集合类型

31(1) 声明集合类型

32(2) 初始化集合变量

34(3) 集合的赋值

35(4) 查询集合的元素

35(5) 为集合添加元素

36(6) 删除集合的元素

374.3. TABLE集合类型

37(1) 声明集合类型

37(2) 初始化集合变量

39(3) 集合的赋值

40(4) 查询集合的元素

40(5) 为集合添加元素

41(6) 删除集合的元素

424.4. ITABLE集合类型

42(1) 声明集合类型

43(2) 初始化集合变量

44(3) 集合的赋值

45(4) 查询集合的元素

45(5) 为集合添加元素

45(6) 删除集合的元素

464.5. RECORD记录类型

46(1) 声明类型

47(2) 初始化变量

47(3) 添加成员

47(4) 访问成员

47(5) 删除

484.6. 复合临时类型

48测试建议

48其他异常

概述
虚谷数据库中类型分为基础类型、自定义类型、运行时临时类型，本文档仅描述自定义类型相关部分。

术语
基础类型

SQL标准中的数字，字符，时间，大对象等类型。
自定义类型

由数据库自定义类型语法定义且持久化存储，创建后可全系统使用。

临时类型(也称本地类型)

在过程、函数和包的定义中使用 type ..is..语法定义(详见第四章)的临时类型，作用范围仅限于过程、函数和包运行时。

记录类型
Record记录类型是由一种或多种元素类型构成的数据类型，使用 type...is record...语法在PL/SQL中定义。

集合类型

 嵌套表(nested table)、索引表(index-by table)和变长数组（Varray）是由相同类型元素构成的集合类型，其中嵌套表和Varray可通过 create type 语法创建为UDT。
设计
自定义类型分三类，区别如下表：

	分类
	成员
	父类
	构造函数
	指定容量
	类型体

	对象类型(OBJECT)
	有
	有
	有
	否
	有

	数组类型（VARRAY）
	无
	无
	无
	是
	无

	嵌套表（TABLE）
	无
	无
	无
	否
	无

概述
构造函数设计
每个用户自定义类型都有一个默认构造函数TypeName()：
函数名：用户自定义类型的名称；

参数：用户自定义类型的所有成员变量；

返回值：该用户自定义类型。

注意：

OBJECT对象类型可以重新定义零个或多个构造函数方法，且自定义的构造函数优先级高于默认构造函数。

数据库中调用udt构造函数相关接口：

PL/SQL中调用udt构造函数相关接口：

继承(子类和超类)
OBJECT类型支持继承关系，被继承的类称为超类、基类或父类。子类在继承付给的属性和方法时，可以扩展自己的属性和方法。

虚谷还未实现用户自定义类型通过super关键字调用父类的属性或方法；
虚谷还未实现用户自定义类型末尾添加[not]final关键字禁止继承该类。

未实现[not]instantiable、[not]persistable关键字。
比较
比较(赋值)与被比较(被赋值)的对象满足一下条件：为同一个模式下的同个udt id。PL/SQL中支持‘is null’或者‘is not null’比较。
赋值
数据库中仅支持构造函数赋值，PL/SQL支持集合操作赋值，游标赋值，成员赋值等。

依赖
对象类型、可变数组类型和嵌套表类型作为独立对象类型被使用时，需要添加该类型与使用者的依赖关系，如3.4.UDT依赖所示。
转换函数
 虚谷输出数据库中的udt数据时，支持将udt内存数据转换成字符串类型功能，暂时不支持其他类型的转换与强制转换。

数据存取流程
存储udt数据流程：

 获取数据库中的udt数据流程：
[image: image2.png]#EHTSQLIE 4

!

‘ TF&, KHudtiEa

!

FEAT AL FE udt B A7

!

it Fudt Bk ZE K

!

fEHudt g &

HEAgERY
udt2str

OBJECT

OBJECT类型设计类似面向对象语言(eg.Java)支持父类继承，成员函数分构造函数(cosntructor)、静态函数(static)和普通成员函数(member)，只支持重载，不支持继承后子类重写父类成员函数(同名同参)。

OBJECT类型定义可以分为类型规范申明和类型体定义，类型规范申明于包申明类似，定义类型的成员变量和申明成员函数(不涉及实现代码)，类型体则定义类型规范中已申明的成员函数的实现。成员变量最多包含65535个，成员的类型可以是SQL标准中的数字，字符，时间类型，也可以是用户自定义的数据类型。
VARRAY

VARRY可变数组类型是一个有序的相同数据类型元素的集合，元素的数据类型可以是SQL标准中的数字，字符，时间类型，也可以是用户自定义的数据类型。数组内的每个元素均有一个索引下标，代表元素在数组中的位置，且可以根据下标直接访问数组元素。
TABLE
Table表类型是一个无序的相同类型数组元素的集合，元素的数据类型可以是SQL标准中的数字，字符，时间类型，也可以是用户自定义的数据类型。

UDT使用
虚谷数据库支持object、varray、table三种用户自定义类型。自定义类型作为类型使用时，可以当成字段类型使用，也可以在过程、函数和包中当成变量类型使用。object还可以作为对象使用，封装数据结构和用于操作这些数据结构的过程或函数，包含属性和方法，支持父类继承。
注意：

UDT暂时不支持大对象类型，创建UDT时会报错；
使用SQL语句create type创建（定义）UDT后，可以在PL/SQL块，子程序或包中使用它。

OBJECT类型

Object对象类型包括对象类型规范和对象类型体两个部分，是在其他数据类型基础上建立的，可以包含多个属性（元素）和多种方法（成员函数），这些属性和方法构成了结构化的数据单元。

创建

语法：

create or replace type udt_name as object(

C_1 type_1,

...,

C_n type_n,

constructor udt_name(C_1 type_1,...,C_n type_n),
member function func_1(v1 IN int) return int,

static function func_2(v1 IN varchar) return varchar,

...,

member procedure proc_1(v1 IN int),

static procedure proc_2(v2 OUT varchar)

);

其中， C_i是object对象的属性名称，遵循字段命名规则，属性类型(type_i)可以是基础类型，也可以是用户自定义的数据类型，func_i和proc_i是object对象的方法名称，遵循函数或过程命名规则。
要求：

满足基本的创建对象权限、语法和条件；
对象属性最多包含65535个；
定义时必须提供属性名称和数据类型；
属性名称遵循字段命名规则；
属性名称不能重复，且不能和函数（过程）名称相同，同时不能和父类属性名称、函数（过程）名称相同；
属性类型不能是临时类型；
属性可以指定默认值，但默认值只能为常数；
自定义构造函数必须为自身类型，若没指定返回值，默认返回自身；
若创建成功，更新系统表sys_objects和sys_types中的信息无误；
异常：
不满足基本创建对象权限、语法和条件时，报错；

udt名称与已有对象名称重名时，且该对象不为udt或者没有or replace关键字时，报错；

对象属性超过65535个，报错；

属性名称，方法名称冲突时，报错；

自定义构造函数返回值不为该udt时，报错；
用force关键字创建无效udt时，udt无法使用；
例子：

创建类型：
create or replace type udt_obj_type as OBJECT(

n numeric,

class varchar2,

type varchar,

dt date);

创建表：
create table obj_tab(

id int,

state varchar2,

type varchar,

udt_obj udt_obj_type

);
插入
语法：

字段类型

insert into udt_tab(C_1,...,C_udt) values(

D_1,

...,

udt_name(...)

);

变量类型
declare

udt_pls udt_name;

begin

udt_pls:= udt_name(...);

insert into udt_tab(C_1,...,C_udt) values(

D_1,

...,

udt_pls

);

end;

要求：

满足基本插入权限、语法和条件；
udt数据长度小于256字节和大于256字节的存储形式不一致；

存在自定义构造函数时，优先调用自定义构造函数；

异常：

类型不存在时，报错；
udt数据长度大于最大行长时，报错；

构造函数参数不一致，且参数无默认值时，报错；
例子：
字段类型

insert into obj_tab(id,state,type,udt_obj) values(

1, '构造函数插入', 'udt_obj_type',udt_obj_type(

1.0,'一层','udt_obj_type','2021-08-24 00:00:00')

);

变量类型
declare

udt_obj udt_obj_type;

begin

udt_obj:= udt_obj_type(

1.0,'一层','udt_obj_type','2021-08-24 00:00:00');

insert into obj_tab(id,state,type,udt_obj) values(

1,'plsql通过udt变量插入数据','udt_obj_type',udt_obj);

end;

更新
语法：

满足基本更新语法，分为一下两种情况：

udt作为更新目标；

udt作为更新条件；
异常：

更新目标类型与字段类型不符，报错；
udt作为更新条件时，对其执行除‘=’外的操作时，报错；
例子：

作为更新目标

update obj_tab set UDT_OBJ=udt_obj_type(

1.0,'更新','obj','2021-08-24 00:00:00')

where id =11;
作为更新条件
update obj_tab set id=11 where UDT_OBJ=udt_obj_type(

1.0,'一层','udt_obj_type','2021-08-24 00:00:00');
查询
语法：

查询udt整体：

select id, udt_obj from obj_tab;

select udt_name(...) from dual;
查询udt的部分属性：
 select udt_name.C_1, ..., udt_name.C_n from udt_tab;
要求：

查询udt整体数据时，输出结果为字符串，且udt整体数据用“[]”包括，“[]”中的元素分隔符为“,”；
查询udt的部分属性数据时，输出结果为该属性类型数据。
异常：

不满足基本的查询权限、语法和条件时，报错；
查询的udt属性不存在时，报错；
例子：
查询udt整体：

select id, udt_obj from obj_tab;

select udt_obj_type(

1.0,'一层','udt_obj_type','2021-08-24 00:00:00');
查询udt的部分属性：
 select udt_obj.n, udt_obj.type, udt_obj.dt from obj_tab;
删除
 语法：
dorp type udt_name;
异常：
不满足基本的删除对象权限、语法和条件时，报错；

例子：
dorp type udt_obj_type;

VARRAY类型

VARRY可变数组类型是一个连续的相同数据类型元素的集合，元素的数据类型可以是SQL标准中的数字，字符，时间类型，也可以是用户自定义的数据类型。数组内的每个元素均有一个索引下标，代表元素在数组中的位置，且可以根据下标直接访问数组元素。
创建

语法：

create or replace type udt_name is varray(size) of type_x;

其中，size为varray类型的指定容量，创建时必须指定；type_x成员类型可以是基础类型，也可以是用户自定义的数据类型。
要求：

满足基本的创建对象权限、语法和条件；
指定容量最大值为65535个；
成员名称遵循字段命名规则
成员类型不能是临时类型；
若创建成功，更新系统表sys_objects和sys_types中的信息无误；
异常：
不满足基本创建对象权限、语法和条件时，报错；

udt名称与已有对象名称重名时，且该对象不为udt或者没有or replace关键字时，报错；

指定容量超过65535，报错；

自定义构造函数返回值不为该udt时，报错；
用force关键字创建无效udt时，udt无法使用；
例子：

创建类型：
create or replace type udt_varryofobj_type is varray(10) of

udt_obj_type;

创建表：
create table varry_tab(

id int,

state varchar2,

type varchar,

udt_varryofobj udt_varryofobj_type);
插入
语法：

字段类型

insert into udt_tab(C_1,...,C_udt) values(

D_1,

...,

udt_name(...)

);

变量类型
declare

udt_pls udt_name;

begin

udt_pls:= udt_name(...);

insert into udt_tab(C_1,...,C_udt) values(

D_1,

...,

udt_pls

);

end;

要求：

满足基本插入权限、语法和条件；
varray类只有默认构造函数，不存在自定义构造函数；
异常：

不满足基本插入权限、语法和条件时，报错；
构造函数参数不一致，且参数无默认值时，报错；
例子：
字段类型

insert into varry_tab(id,state,type,udt_varryofobj) values(

2, '构造函数插入', 'udt_varryofobj_type',

udt_varryofobj_type(

udt_obj_type(

1.0,'2层','udt_obj_type','2021-08-24 00:00:00'),

udt_obj_type(

1.0,'2层','udt_obj_type','2021-08-24 00:00:00'))

);

变量类型
declare

udt_varryofobj udt_varryofobj_type;

begin

udt_varryofobj:=udt_varryofobj_type(

udt_obj_type(

1.0,'2层','udt_obj_type','2021-08-24 00:00:00'),

udt_obj_type(

1.0,'2层','udt_obj_type','2021-08-24 00:00:00'));

insert into varry_tab(id,state,type,udt_varryofobj) values(

2,'plsql通过udt变量插入数据',

'udt_varryofobj_type',

udt_varryofobj);

end;

更新
语法：

满足基本更新语法，分为一下两种情况：

udt作为更新目标；

udt作为更新条件；
异常：

更新目标类型与字段类型不符，报错；
udt作为更新条件时，对其执行除‘=’外的操作时，报错；
例子：

作为更新目标

update varry_tab set udt_varryofobj = udt_varryofobj_type(

udt_obj_type(

1.0,'更新','obj','2021-08-24 00:00:00'),

udt_obj_type(

1.0,'更新','obj','2021-08-24 00:00:00'))

where id =22;;
作为更新条件
update varry_tab set id=22 where

udt_varryofobj = udt_varryofobj_type(

udt_obj_type(

1.0,'2层','udt_obj_type','2021-08-24 00:00:00'),

udt_obj_type(

1.0,'2层','udt_obj_type','2021-08-24 00:00:00'));
查询
语法：

查询udt整体：

select c_1, udt_col from obj_tab;

select udt_name(...) from dual;
查询udt的部分属性：
 select udt_name(i) from udt_tab;
要求：

查询udt整体数据时，输出结果为字符串，且udt整体数据用“[]”包括，“[]”中的元素分隔符为“,”；
查询udt的部分属性数据时，输出结果为该属性类型数据。
异常：

不满足基本的查询权限、语法和条件时，报错；
i>size，报错；
例子：
查询udt整体：

select id, udt_varryofobj from varry_tab;

select udt_varryofobj_type(

udt_obj_type(

1.0,'2层','udt_obj_type','2021-08-24 00:00:00'),

udt_obj_type(

1.0,'2层','udt_obj_type','2021-08-24 00:00:00'));
查询udt的部分属性：
 select udt_varryofobj(1),udt_varryofobj(2) from varry_tab;
删除
 语法：
dorp type udt_name;
异常：
不满足基本的删除对象权限、语法和条件时，报错；

例子：
dorp type udt_varryofobj_type;
TABLE类型
Table表类型是一个不一定连续的相同类型数组元素的集合，元素的数据类型可以是SQL标准中的数字，字符，时间类型，也可以是用户自定义的数据类型。

创建

语法：

create or replace type udt_name as table of type_x;

其中，type_x可以是基础类型，也可以是用户自定义的数据类型。
要求：

满足基本的创建对象权限、语法和条件；
若创建成功，更新系统表sys_objects和sys_types中的信息无误；
异常：
不满足基本创建对象权限、语法和条件时，报错；

udt名称与已有对象名称重名时，且该对象不为udt或者没有or replace关键字时，报错；

自定义构造函数返回值不为该udt时，报错；
用force关键字创建无效udt时，udt无法使用；
例子：

创建类型：
create or replace type udt_ttabofobj_type as table of of

udt_obj_type;

创建表：
create table ttab_tab(

id int,

state varchar2,

type varchar,

udt_ttabofobj udt_ttabofobj_type);
插入
语法：

字段类型

insert into udt_tab(C_1,...,C_udt) values(

D_1,

...,

udt_name(...)

);

变量类型
declare

udt_pls udt_name;

begin

udt_pls:= udt_name(...);

insert into udt_tab(C_1,...,C_udt) values(

D_1,

...,

udt_pls

);

end;

要求：

满足基本插入权限、语法和条件；
varray类只有默认构造函数，不存在自定义构造函数；
异常：

不满足基本插入权限、语法和条件时，报错；
构造函数参数不一致，且参数无默认值时，报错；
例子：
字段类型

insert into ttab_tab(id,state,type,udt_ttabofobj) values(

2, '构造函数插入', 'udt_ttabofobj_type',

udt_ttabofobj_type(

udt_obj_type(

1.0,'2层','udt_obj_type','2021-08-24 00:00:00'),

udt_obj_type(

1.0,'2层','udt_obj_type','2021-08-24 00:00:00'))

);

变量类型
declare

udt_ttabofobj udt_ttabofobj_type;

begin

udt_ttabofobj:=udt_ttabofobj_type(

udt_obj_type(

1.0,'2层','udt_obj_type','2021-08-24 00:00:00'),

udt_obj_type(

1.0,'2层','udt_obj_type','2021-08-24 00:00:00'));

insert into ttab_tab(id,state,type,udt_ttabofobj) values(

2,'plsql通过udt变量插入数据',

'udt_ttabofobj_type',

udt_ttabofobj);

end;

更新
语法：

满足基本更新语法，分为一下两种情况：

udt作为更新目标；

udt作为更新条件；
异常：

更新目标类型与字段类型不符，报错；
udt作为更新条件时，对其执行除‘=’外的操作时，报错；
例子：

作为更新目标

update ttab_tab set udt_ttabofobj = udt_ttabofobj_type(

udt_obj_type(

1.0,'更新','obj','2021-08-24 00:00:00'),

udt_obj_type(

1.0,'更新','obj','2021-08-24 00:00:00'))

where id =22;;
作为更新条件
update ttab_tab set id=22 where

udt_ttabofobj = udt_ttabofobj_type(

udt_obj_type(

1.0,'2层','udt_obj_type','2021-08-24 00:00:00'),

udt_obj_type(

1.0,'2层','udt_obj_type','2021-08-24 00:00:00'));
查询
语法：

查询table整体：

select c_1, udt_col from obj_tab;

select udt_name(...) from dual;
查询table的部分属性：
select udt_name(i) from udt_tab;

利用table()方法查询单行table的元素：
 select * from table((select udt_cal from udt_tab)) where ..;
要求：

查询udt整体数据时，输出结果为字符串，且udt整体数据用“[]”包括，“[]”中的元素分隔符为“,”；
查询udt的部分属性数据时，输出结果为该属性类型数据。
异常：

不满足基本的查询权限、语法和条件时，报错；
i>size，报错；
例子：
查询udt整体：

select id, udt_ttabofobj from ttab_tab;

select udt_ttabofobj_type(

udt_obj_type(

1.0,'2层','udt_obj_type','2021-08-24 00:00:00'),

udt_obj_type(

1.0,'2层','udt_obj_type','2021-08-24 00:00:00'));
查询udt的部分属性：
 select udt_ttabofobj(1),udt_ttabofobj(2) from ttab_tab;
删除
 语法：
dorp type udt_name;
异常：
不满足基本的删除对象权限、语法和条件时，报错；

例子：
dorp type udt_ttabofobj_type;
UDT依赖
UDT的依赖对象

成员变量的类型依赖udt；

成员方法的参数类型依赖udt；

成员方法的变量定义类型依赖udt；

成员方法的类型定义基类依赖udt；

成员方法的执行语句依赖表、视图、触发器、函数或过程。

依赖UDT的对象

函数或过程依赖UDT
函数返回值类型依赖udt；

存储过程（或函数）的参数类型依赖udt；

存储过程（或函数）的参数默认值表达式依赖udt；

存储过程（或函数）的变量定义类型依赖udt；

存储过程（或函数）的类型定义基类依赖udt；

存储过程（或函数）的执行语句表达式依赖udt；

包依赖UDT
包的函数返回值类型依赖udt；

包的存储过程（或函数）的参数默认值表达式依赖udt；

包的存储过程（或函数）的变量定义类型依赖udt；

包的存储过程（或函数）的类型定义基类依赖udt；

表依赖UDT
表字段类型依赖udt；

表字段默认值表达式依赖udt；

表字段默认值约束表达式依赖udt；

表字段检查值表达式依赖udt。

视图依赖UDT

视图条件表达式依赖udt；

视图目标表达式依赖udt；
触发器依赖UDT

触发器条件表达式依赖udt；

触发器执行语句表达式依赖udt；
注意：表达式类型可以是函数和操作等。
PL/SQl中集合类型和记录类型
虚谷数据库PL/SQL可以定义两种复合数据类型：集合和记录。
集合由相同数据类型的组件（元素）组成，通过‘变量名(索引号)’形式访问集合变量的每个元素。要创建集合变量，需要创建该类型的变量或使用：%TYPE。

记录可以由不同数据类型的组件（字段）组成，通过‘变量名.字段名’形式访问记录的每个字段。要创建记录变量，需要先定义一个record类型，然后创建该类型的变量，或者使用：%ROWTYPE或%TYPE。

集合类型概述
集合类型是一种类似于列表和数组的数据结构，由若干个元素组成，且每个元素具有相同的数据类型，每个元素位于集合中的一个固定索引处。
集合类型主要分为三步来完成，一是声明，二是初始化，三是赋值。初始化和赋值可以在声明块中完成，也可以在执行块中完成。虚谷的集合类型在声明变量时，自动完成初始化。
声明集合

集合的声明分为集合类型声明和集合类型的变量声明。

集合类型声明语法：

TYPE 集合类型名 IS 集合类型;
集合变量声明：

集合变量名 集合类型名;
初始化集合
集合的初始化主要通过构造函数进行初始化，初始化的方法包括：

在声明块中声明集合，在声明块中使用构造函数，在执行块中使用extend方法进行赋值；
在声明块中声明集合，在声明块中使用构造函数初始化并赋值。
在声明块中声明集合，在执行块使用构造函数初始化为空(empty)，在执行块中使用extend方法进行赋值；
在声明块中声明集合，在执行块使用构造函数初始化并赋值。
注意：

初始化为空表示的是一个空集合（empty，但非NULL），而未初始化时是NULL（UNKNOWN值）。
变成数组类型（VARRAY）和嵌套表类型（TABLE）在赋值之前必须初始化，可以用EXTREND扩展，用构造函数初始化，而索引表（ITABLE）无需初始化。
不同集合区别
虚谷数据库提供了变长数组（VARRAY）、嵌套表（TABLE）、索引表（ITABLE，也称联合数组）三种同质元素的集合类型，三者区别如下表所示。

	属性
	变长数组(VARRAY)
	嵌套表(TABLE)
	索引表(ITABLE)

	是否可用于SQL
	可用
	可用
	不可用

	表字段类型
	可用，数据在同一表中
	可用，数据在同一表中
	不可用

	初始化
	声明时自动完成
	声明时自动完成
	声明时自动完成

	未初始化状态
	引用时非法访问
	引用时非法访问
	元素未定义

	数据连续性
	连续
	连续，删除后不连续
	不连续（稀疏）

	是否有界
	有size界
	可以扩展
	无界

	对任一元素赋值
	不可以，需要先扩展
	不可以，需要先扩展
	可以

	扩展方法
	EXTEND
	EXTEND,EXTEND()
	给新元素赋值

	比较操作
	不支持
	不支持
	不支持

	集合操作bulk collect into
	支持
	支持
	支持

集合方法

上述集合类型的方法和使用限制如下表所示。
	集合方法
	描述
	使用限制

	EXISTS(n)
	若下标为n的元素存在时，返回TRUE
	通用

	COUNT或COUNT()
	该集合元素的数目
	通用

	FIRST或FIRST()
	返回第一个元素索引号，空返回NULL
	通用

	LAST或LAST()
	返回最后一个元素索引号，空返回NULL
	通用

	PRIOR(n)
	返回当前元素n的前一个索引号，空返回NULL
	通用

	NEXT(n)
	返回当前元素n的下一个索引号，空返回NULL
	通用

	LIMIT
	返回VARRAY数组创建时指定的SIZE
	VARRAY

	EXTEND
	为集合添加一个元素，初始值为NULL
	对ITABLE非法

	EXTEND(n)
	为集合添加n个元素，初始值为NULL
	对ITABLE非法

	EXTEND(n,m)
	为集合添加n个元素，初始值为m
	对ITABLE非法

	DELETE
	删除集合所有元素
	通用

	DELETE(n)
	删除集合下标为n的元素
	对VARRAY非法

	DELETE(n,m)
	删除集合下标为n~m的元素
	对VARRAY非法

	TRIM
	从集合末端开始删除1个元素
	对ITABLE非法

	TRIM(n)
	从集合末端开始删除n个元素
	对ITABLE非法

注意：

NEXT（或PRIOR）返回的是当前元素n的下一个（或前一个）非空值元素索引号（即delete删除的元素将被跳过，返回存在的值的索引）。因此VARRAY的NEXT（或PRIOR）一定是连续的，TABLE和ITABLE的NEXT不一定是连续的。
VARRAY集合类型

声明集合类型

集合的声明分为varray类型声明和varray类型的变量声明。
语法：

type t_varr is varray(size) of type_x;

v_varr t_varr;

其中，size为varray类型的指定容量，创建时必须指定；元素类型type_x可以是基础类型、udt、集合类型或者记录类型。
要求：

满足基本的声明变量的权限、语法和条件；
类型名遵循类型命名规则
异常：
成员类型为不存在类型时，报错；

例子：

创建集合类型t_varr，声明变量v_varr并初始化为空。
TYPE t_varr is varray(10) OF VARCHAR(10);

v_varr t_varr:=t_varr();
初始化集合变量
语法：

1. 声明块中用构造函数初始化为空，执行块中用extend赋值：
declare

TYPE t_varr is varray(10) OF VARCHAR(10);
v_varr t_varr:=t_varr();

begin

v_varr.EXTEND;

v_varr(1):='yi';

v_varr.EXTEND;

v_varr(2):='er';
end;
2. 声明块中用构造函数初始化并赋值。

declare

TYPE t_varr is varray(10) OF VARCHAR(10);
v_varr t_varr:=t_varr('yi','er');

begin

v_varr(1):='yi-new';

v_varr(2):='er-new';
end;
3. 执行块中用构造函数初始化为空，并用extend赋值：

declare
TYPE t_varr is varray(10) OF VARCHAR(10);
v_varr t_varr;

begin

v_varr:=t_varr()

v_varr.EXTEND;

v_varr(1):='yi';

v_varr.EXTEND;

v_varr(2):='er';
end;
4. 执行块中使用构造函数初始化并赋值：

declare
TYPE t_varr is varray(10) OF VARCHAR(10);
v_varr t_varr;

begin

v_varr:=t_varr('yi','er');

end;
集合的赋值

通过构造函数，实现集合的整体赋值：
v_varr:=t_varr(elem1,elem2);
通过游标和集合操作，实现集合的整体赋值：
cursor c1 is select * from tab_1;

type t_c1 is table of c1%rowtype;

v_c1 t_c1;
select * bulk collect into v_c1 from tab_1;
3. 通过下标索引，实现集合的单个元素赋值：
v_varr(i):=expression;

异常：

下标索引不存在，报错；

下标索引指向未初始化元素，报错；

引用初始化为空值的元素，报错；

查询集合的元素
v_varr(i)
为集合添加元素
EXTEND
EXTEND(n)
EXTEND(n,m)
例子：
declare

TYPE t_rec IS record(id int,name varchar);

TYPE t_varr is varray(10) OF t_rec;

v_varr t_varr;

begin

if v_varr is null then

SEND_MSG('v_varr is null');

else

SEND_MSG('v_varr is not null');

end if;

v_varr.EXTEND;

v_varr(1).id:=1;

v_varr.extend(2);

v_varr(3).name:='er';

SEND_MSG('count'||v_varr.count);

for i in v_varr.first()..v_varr.last() loop

SEND_MSG(i||' id:'||v_varr(i).id||

'name：'||v_varr(i).name);

end loop;

end;
删除集合的元素
DELETE
TRIM

TRIM(n)
异常：

越界删除；
例子：
declare

TYPE t_varr is varray(10) OF varchar;
v_varr t_varr:=t_varr();

begin

v_varr.EXTEND();

SEND_MSG('count: '||v_varr.count);

v_varr.TRIM;

SEND_MSG('count: '||v_varr.count);

v_varr.DELETE;

SEND_MSG('count: '||v_varr.count);

end;
TABLE集合类型
声明集合类型

语法：

type t_ttab as table of type_x;

v_ttab t_ttab;

其中，元素类型type_x可以是基础类型、udt、集合类型或者记录类型。
要求：

满足基本的声明变量的权限、语法和条件；
类型名遵循类型命名规则
异常：
成员类型为不存在类型时，报错；

例子：

创建集合类型t_ttab，声明变量v_ttab并初始化为空。
TYPE t_ttab IS table OF VARCHAR(10);

v_ttab t_ttab:=t_ttab();
初始化集合变量
语法：

1. 声明块中用构造函数初始化为空，执行块中用extend赋值：
declare

TYPE t_ttab is table OF VARCHAR(10);

v_ttab t_ttab:=t_ttab();

begin

v_ttab.EXTEND;

v_ttab(1):='yi';

v_ttab.EXTEND;

v_ttab(2):='er';
end;
2. 声明块中用构造函数初始化并赋值。

declare

TYPE t_ttab is table OF VARCHAR(10);

v_ttab t_ttab:=t_ttab('yi','er');

begin

v_ttab(1):='yi-new';

v_ttab(2):='er-new';
end;
执行块中用构造函数初始化为空，并用extend赋值：

declare
TYPE t_ttab is table OF VARCHAR(10);

v_ttab t_ttab;

begin

v_ttab:=t_ttab()

v_ttab.EXTEND;

v_ttab(1):='yi';

v_ttab.EXTEND;

v_ttab(2):='er';
end;
执行块中使用构造函数初始化并赋值：

declare
TYPE t_ttab is table OF VARCHAR(10);

v_ttab t_ttab;

begin

v_ttab:=t_ttab('yi','er');

end;
集合的赋值

1. 通过构造函数，实现集合的整体赋值：
v_ttab:=t_ttab(elem1,elem2);
2. 通过游标和集合操作，实现集合的整体赋值：
cursor c1 is select * from tab_1;

type t_c1 is table of c1%rowtype;

v_c1 t_c1;
select * bulk collect into v_c1 from tab_1;
3. 通过下标索引，实现集合的单个元素赋值：
v_ttab(i):=expression;

异常：

下标索引不存在，报错；

下标索引指向未初始化元素，报错；

引用初始化为空值的元素，报错；

查询集合的元素
v_ttab(i)
为集合添加元素
EXTEND
EXTEND(n)
EXTEND(n,m)
例子：
declare

TYPE t_rec IS record(id int,name varchar);

TYPE t_ttab IS table OF t_rec;

v_ttab t_ttab;

begin

if v_ttab is null then

SEND_MSG('v_ttab is null');

else

SEND_MSG('v_ttab is not null');

end if;

v_ttab.EXTEND;

v_ttab(1).id:=1;

v_ttab.extend(2);

v_ttab(3).name:='er';

SEND_MSG('count'||v_ttab.count);

for i in v_ttab.first()..v_ttab.last() loop

SEND_MSG(i||' id:'||v_ttab(i).id||

'name：'||v_ttab(i).name);

end loop;

end;
删除集合的元素
DELETE
DELETE(n)
DELETE(n,m)
TRIM

TRIM(n)
异常：

越界删除；
例子：
declare
v_ttab t_ttab:=t_ttab();

begin

v_ttab.EXTEND(10);

SEND_MSG('count: '||v_ttab.count);

v_varr.TRIM;

SEND_MSG('count: '||v_ttab.count);

v_ttab(2):='er';
end;

ITABLE集合类型
声明集合类型

语法：

type t_itab as table of type_x index by pls_integer;

v_itab t_itab;

其中，元素类型type_x可以是基础类型、udt、集合类型或者记录类型。
要求：

满足基本的声明变量的权限、语法和条件；
类型名遵循类型命名规则
异常：
成员类型为不存在类型时，报错；

例子：

创建集合类型t_itab，声明变量v_itab并初始化为空。
type t_itab as table of VARCHAR(10) index by pls_integer;
v_itab t_itab;
初始化集合变量
语法：
2. 声明块中用构造函数初始化并赋值。

declare
type t_itab is table of VARCHAR(10) index by pls_integer;

v_itab t_itab:=t_itab('yi','er');

begin

v_itab(1):='yi-new';

v_itab(2):='er-new';
end;
执行块中用构造函数初始化为空，并用extend赋值：

declare
TYPE t_ttab is varray(10) OF VARCHAR(10);

v_itab t_itab;

begin

v_itab:=t_itab()

v_itab.EXTEND;

v_itab(1):='yi';

v_itab.EXTEND;

v_itab(2):='er';
end;
执行块中使用构造函数初始化并赋值：

declare
TYPE t_ttab is varray(10) OF VARCHAR(10);

v_itab t_itab;

begin

v_itab:=t_itab('yi','er');

end;
集合的赋值

1. 通过构造函数，实现集合的整体赋值：
v_itab:=t_itab(elem1,elem2);
2. 通过游标和集合操作，实现集合的整体赋值：
cursor c1 is select * from tab_1;

type t_c1 is table of c1%rowtype;

v_c1 t_c1;
select * bulk collect into v_c1 from tab_1;
3. 通过下标索引，实现集合的单个元素赋值：
v_itab(i):=expression;

异常：

下标索引不存在，报错；

下标索引指向未初始化元素，报错；

引用初始化为空值的元素，报错；

查询集合的元素
v_itab(i)
为集合添加元素
直接赋值；
不支持EXTEND
删除集合的元素
DELETE
DELETE(n)
DELETE(n,m)
RECORD记录类型

Record记录类型是由多种不同数据类型的元素组合成的数据类型。

声明类型

语法：

type udt_temp_name is record(

C_1 type_1,

...,

C_n type_n

);

其中， C_i是record是记录的字段名称，遵循字段命名规则，字段类型(type_i)可以是基础类型，也可以是用户自定义的数据类型。
要求：

满足基本的声明变量的权限、语法和条件；
字段数量最多包含65535个；
字段可以指定默认值，但默认值只能为常数；
记录的构造函数值不能为空；
例子：

创建类型：
declare

TYPE t_rec IS RECORD (

n numeric,

class varchar2,

type varchar,

dt date);

初始化变量
利用udt声明且初始化为empty：

v_rec1 t_rec;

利用表字段组合类型声明且初始化为empty：

v_rec2 test_tab%rowtype;
利用游标声明且初始化为empty

v_rec3 cursor_rec%rowtype;

用构造函数初始化：

v_rec t_rec:=t_rec(

1.0,'一层','rec_type','2021-08-24 00:00:00');
添加成员
不支持为record添加新成员。
访问成员
v_rec.n

删除
PL/SQL执行结束后，会自动删除定义的变量和类型。
复合临时类型
以上几种类型的相互嵌套使用，若与临时类型嵌套，则只能在过程、函数和包的定义中使用。
测试建议

附件1：
[image: image3.emf]udt测试建议.xlsx

。
其他
udt输出默认为字符串形式，未实现按对象输出；
...
[image: image1.png]2!

P

Sheet1

		UDT类型				定义方式		使用限制		定义基类		支持操作		备注

		对象类型		Object-Type
独立对象类型		create type .. as object(..);
create type .. under udt_obj();		数据库、PL\SQL的块和包中使用。		1.普通类型(除大对象);
2.对象类型
3.继承(父子必须是object)		1.（成员方法）创建、使用成员方法(过程或函数);
2.（继承）继承、使用父类的成员属性和方法;
3.（构造函数）通过默认构造函数构造对象类型数据;
4.（访问成员）通过指定对象成员进行赋值、比较、输出操作;
5.（整体对象）获取表中对象数据、整体插入表、比较、修改、按字符串输出;
6.（类型）作为其他类型的基类、表的基类、过程、函数、包中变量的基类;

				Varray-Type
独立数组类型		create type .. as varray(n) of ..;		数据库、PL\SQL的块和包中使用。		1.普通类型(除大对象);
2.对象类型		1.（构造函数）通过默认构造函数构造集合对象类型数据;
2.（访问元素）通过索引访问指定元素进行赋值、比较、输出操作;
3.（整体）获取表中集合数据、插入表、比较、修改、按字符串输出;
4.（类型）作为其他类型的基类、表的基类、过程、函数、包中变量的基类;
5.（集合方法）PL\SQL的块和包中使用集合方法;

				Table-Type
独立嵌套表类型		create type .. as table of ..;		数据库、PL\SQL的块和包中使用。		1.普通类型(除大对象);
2.对象类型		1.（构造函数）通过默认构造函数构造对象类型数据;
2.（访问元素）通过索引访问指定元素进行赋值、比较、输出操作;
3.（整体）获取表中集合数据、插入表、比较、修改、按字符串输出;
4.（类型）作为其他类型的基类、表的基类、过程、函数、包中变量的基类;
5.（集合方法）PL\SQL的块和包中使用集合方法;
6.数据库中的Table类型数据利用table()函数可以当成一个表。
例如：select * from table((select d_tab from tab_table));

		记录类型		Record-Type		type .. is record(..);
通过%TYPE或%ROWTYPE声明记录类型变量;		PL\SQL的块和包中使用。		1.普通类型(除大对象);
2.对象类型
3.记录类型
4.集合类型
5.%TYPE或%ROWTYPE		1.（构造函数）通过默认构造函数构造记录类型数据;
2.（访问字段）通过指定成员进行赋值、比较、输出操作;
3.（类型）作为其他临时类型的基类、过程、函数、包中变量的基类;

		集合类型		Varray-Type		type .. is varray(n) of ..		PL\SQL的块和包中使用。		1.普通类型(除大对象);
2.对象类型
3.记录类型
4.集合类型
5.%TYPE或%ROWTYPE		1.（构造函数）通过默认构造函数构造集合类型数据;
2.（访问集合元素）通过指定元素进行赋值、比较、输出操作;
3.（整体集合）获取表中集合数据、插入表、比较、修改;
4.（类型）作为其他临时类型的基类、过程、函数、包中变量的基类;
5.（集合方法）PL\SQL的块和包中使用集合方法;

				Table-Type		type .. is table of ..		PL\SQL的块和包中使用。		1.普通类型(除大对象);
2.对象类型
3.记录类型
4.集合类型
5.%TYPE或%ROWTYPE		1.（构造函数）通过默认构造函数构造集合类型数据;
2.（访问集合元素）通过指定元素进行赋值、比较、输出操作;
3.（整体集合）获取表中集合数据、插入表、比较、修改;
4.（类型）作为其他临时类型的基类、过程、函数、包中变量的基类;
5.（集合方法）PL\SQL的块和包中使用集合方法;
6.数据库中的Table类型数据利用table()函数可以当成一个表。
例如：select * from table((select d_tab from tab_table));

				ITable-Type		type .. is table of .. index by ..;		PL\SQL的块和包中使用。		1.普通类型(除大对象);
2.对象类型
3.记录类型
4.集合类型
5.%TYPE或%ROWTYPE		1.（构造函数）通过默认构造函数构造集合类型数据;
2.（访问集合元素）通过指定元素进行赋值、比较、输出操作;
3.（整体集合）获取表中集合数据、插入表、比较、修改;
4.（类型）作为其他临时类型的基类、过程、函数、包中变量的基类;
5.（集合方法）PL\SQL的块和包中使用集合方法;		表类型的索引可以为整形或者字符串

